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Reconstructing the origin and evolution of land plants and their
algal relatives is a fundamental problem in plant phylogenetics, and
is essential for understanding how critical adaptations arose, in-
cluding the embryo, vascular tissue, seeds, and flowers. Despite
advances in molecular systematics, some hypotheses of relationships
remain weakly resolved. Inferring deep phylogenies with bouts of
rapid diversification can be problematic; however, genome-scale
data should significantly increase the number of informative charac-
ters for analyses. Recent phylogenomic reconstructions focused on
the major divergences of plants have resulted in promising but in-
consistent results. One limitation is sparse taxon sampling, likely
resulting from the difficulty and cost of data generation. To address
this limitation, transcriptome data for 92 streptophyte taxa were
generated and analyzed along with 11 published plant genome
sequences. Phylogenetic reconstructions were conducted using up
to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses
were performed to test the robustness of phylogenetic inferences to
permutations of the datamatrix or to phylogenetic method, including
supermatrix, supertree, and coalescent-based approaches, maximum-
likelihood and Bayesian methods, partitioned and unpartitioned ana-
lyses, and amino acid versus DNA alignments. Among other
results, we find robust support for a sister-group relationship
between land plants and one group of streptophyte green al-
gae, the Zygnematophyceae. Strong and robust support for a
clade comprising liverworts and mosses is inconsistent with a
widely accepted view of early land plant evolution, and suggests
that phylogenetic hypotheses used to understand the evolution of
fundamental plant traits should be reevaluated.
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The origin of embryophytes (land plants) in the Ordovician
period roughly 480 Mya (1–4) marks one of the most im-

portant events in the evolution of life on Earth. The early evo-
lution of embryophytes in terrestrial environments was facilitated
by numerous innovations, including parental protection for the
developing embryo, sperm and egg production in multicellular
protective structures, and an alternation of phases (often referred to
as generations) in which a diploid sporophytic life history stage
gives rise to a multicellular haploid gametophytic phase. With
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Early branching events in the diversification of land plants and
closely related algal lineages remain fundamental and un-
resolved questions in plant evolutionary biology. Accurate
reconstructions of these relationships are critical for testing hy-
potheses of character evolution: for example, the origins of the
embryo, vascular tissue, seeds, and flowers. We investigated
relationships among streptophyte algae and land plants using
the largest set of nuclear genes that has been applied to this
problem to date. Hypothesized relationships were rigorously
tested through a series of analyses to assess systematic errors in
phylogenetic inference caused by sampling artifacts and model
misspecification. Results support some generally accepted phy-
logenetic hypotheses, while rejecting others. This work provides
a new framework for studies of land plant evolution.
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these and subsequent innovations, embryophytes diversified and
the lineage ultimately came to dominate and significantly alter
terrestrial environments (1–4). The origin of embryophytes was
a pivotal event in evolutionary history that spawned the tremen-
dous diversity of morphological, physiological, reproductive, and
ecological traits we see in both the extant and fossil terrestrial
flora. Moreover, colonization of land by plants greatly changed the
global carbon cycle, drawing down atmospheric CO2 concen-
trations (5) and forming the foundation of the vast majority of
terrestrial ecosystems.
Subsequent innovations in embryophyte evolution greatly ex-

panded the diversity of the terrestrial flora. The origin of vascular
tissue and antidesiccation features in tracheophytes (vascular
plants) established a more efficient system for the transport and
retention of water, photosynthate, and other nutrients, as well as
providing the cellular foundation for wood. Physiological innova-
tions were accompanied by a shift in life history, from gameto-
phytic to sporophytic dominance. The origin of the seed in the
seed plant lineage greatly increased parental provisioning for the
embryo, and the origin of the flower in the angiosperm lineage
prompted a series of rapid radiations, yielding the most diverse
group of extant plants.
Much of our current understanding of plant phylogeny has

come from the study of plastid data (e.g., refs. 6–11), mitochon-
drial genes (e.g., refs. 12 and 13) and ribosomal gene analyses
(e.g., refs. 14 and 15). The more recent application of phyloge-
nomic analyses to large numbers of nuclear genes has generally
supported previous hypotheses, but taxon sampling has been
sparse and some inferred relationships remain controversial. Two
fundamental questions persist with respect to the origin and
diversification of embryophytes: (i) which streptophytic green
algal lineage is most closely related to embryophytes, and (ii)
what is the branching order among major embryophyte line-
ages? We aim to build on previous phylogenomic investigations
of the earliest branching events in streptophyte evolution
through increased sampling of taxa representing key lineages
and innovations. Refined understanding of these events will
inform investigations of traits that have contributed to key
innovations in plant evolution.
Although the monophyly of Streptophyta (streptophytic green

algae plus embryophytes) is well established (16–25), the inferred
branching order of streptophytic algal lineages relative to embryo-
phytes remains uncertain (26–30). Conflict among previous studies
may derive from differing taxon and gene sampling and different
methods of analysis. Within streptophytes, embryophytes, Charales,
and Coleochaetales share derived, complex characteristics, in-
cluding oogamous sexual reproduction, parental retention of the
egg, apical growth with branching, and the presence of plasmo-
desmata in the gametophytic phase: pores in the cell wall allowing
cytoplasmic transport of molecules between neighboring cells.
Furthermore, the phragmoplast, a collection of microtubules and
actin microfilaments that directs formation of the cell plates during
cytokinesis, is shared among embryophytes, Charales, Coleochaetales,
and at least some members of the Zygnematophyceae (31–
33). A four-gene phylogeny that included markers from all
three genomic compartments was consistent with the previously
hypothesized sister-group relationship of Charales and embryo-
phytes that, together, were sister to Coleochaetales (34).
However, recent phylogenomic analyses based on complete
plastome sequences, discrete plastome regions, ribosomal pro-
tein genes, and other nuclear genes have instead inferred that
either Coleochaetales (35), Zygnematophyceae (8, 27–30, 36), or
a clade including both lineages (28, 37, 38) are sister to em-
bryophytes. These results imply that either complex characters,
such as branching, parental retention of the egg, and plasmo-
desmata originated independently in the Charales, Coleochae-
tales, and embryophytes, or they originated once in a common

ancestor and were subsequently lost in most lineages within
the Zygnematophyceae.
Early events in the diversification of embryophytes gave rise to

mosses, liverworts, and hornworts (collectively bryophytes) (25,
39–44). Virtually every possible hypothesis of branching order
involving these groups has been proposed and supported by
various data. Resolving this uncertainty has implications for
understanding evolution of the heteromorphic alternation of life
history phases shared by all embryophytes. Whereas all bryo-
phyte lineages share a life history in which the haploid phase
(gametophyte) is dominant, with a diploid phase (sporophyte)
that is dependent on the maternal gametophyte, vascular plants
instead have a dominant sporophytic phase. A grade of bryo-
phytes would support the hypothesis that the gametophyte-
dominant life cycle is plesiomorphic in embryophytes (45). In
contrast, if bryophytes are monophyletic, it is equally likely that
the common ancestor of all land plants was characterized by
either a gametophyte-dominant or a sporophyte-dominant life
cycle. Furthermore, fossil taxa with isomorphic life history phases
(i.e., neither the sporophyte nor the gametophyte is dominant)
have been described from the Rhynie Chert (46); our in-
terpretation of the origin and evolution of plants with hetero-
morphic or isomorphic generations may be shaped by the
resolution of bryophyte lineages. Indeed, bryophytes have been
resolved as monophyletic in some analyses (41, 47), but analyses
indicating a grade of liverworts, mosses, hornworts, with the
latter as the sister group of tracheophytes (e.g., ref. 45), have
been largely favored. This latter branching order has been sup-
ported by molecular phylogenetic analyses (25, 38, 43) and mi-
tochondrial intron gains (42, 48), but it has also been rejected by
several analyses. For example, mosses and liverworts have been
resolved as monophyletic in phylogenetic analyses of complete
plastomes (23, 49), multigene datasets (40), and morphological
analyses (44). The position of the hornworts relative to a mosses+
liverwort clade and tracheophytes, however, has varied in these
studies, and sparse taxon sampling may have influenced resulting
topologies.
Key tracheophyte relationships have also been revisited with

genomic data, including investigations of relationships within and
among lycophytes and monilophytes (49), the position of Gnetales
within a monophyletic gymnosperm clade (50), and the branching
order among angiosperm lineages. Increasingly, analyses of nuclear
genes assembled from publicly available genome or transcriptome
databases are being used to assess previously recalcitrant relation-
ships within the green tree of life (27, 29, 35, 51–53).
Here, we present an analysis of 852 protein-coding nuclear

genes for 103 taxa obtained by mining 92 streptophyte (algae and
embryophytes) transcriptomes generated de novo, at least in part,
for this study, plus 11 publicly available plant nuclear genome
sequences. Whereas taxon sampling in phylogenomic analyses is
generally sparse, the transcriptome data presented here greatly
expand coverage across the green plant clade and sampling density
within many key clades. We analyze these data using a compre-
hensive set of data-filtering and analytical approaches to assess
whether inferred relationships are robust across analyses or pos-
sibly artifacts of data limitations or misspecification of evolution-
ary models used in phylogenetic inference algorithms.

Results and Discussion
Transcriptome Sequencing and Sorting. Protein sequences from 25
publicly available genomes were clustered into 27,054 operation-
ally defined gene families using orthoMCL (54). Hidden Markov
models (HMMs) were computed for each of these inferred gene-
family circumscriptions or “orthogroups” (55) and used to assign
transcript assemblies for 92 species (Table S1) to the appropriate
orthogroups. To maintain focus on Streptophyta while avoiding
oversampling some flowering plant clades, only 11 of the 25
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publicly available sequenced genomes used to define orthogroups
were included in our phylogenomic analyses (Table S1).
After filtering, multiple sequence alignments (MSAs) and gene

trees were estimated for 9,610 gene families that included at least
four taxa (transcriptome assemblies, unfiltered gene family align-
ments, and trees are available through the iPlant Data Store and
can be accessed via iPlant Discovery Environment or at mirrors.
iplantcollaborative.org/onekp_pilot). Of these, we identified 852
gene families that included at most one gene copy from at least 24
of the 25 sequenced genomes. These putatively single-copy gene
families were used to estimate relationships (56) among the spe-
cies included in Table S1. For those taxa where more than one
sequence mapped to the same typically single-copy orthogroup,
a consensus sequence was generated and retained if nucleotide
divergence between the overlapping sequences was 5% or less; if
divergence was greater than 5%, that species was not included in
the MSA for that gene family. As a consequence, all filtered
orthogroup MSAs included at most one sequence per taxon;
a sequence for a particular taxon may have been missing from
a single-copy gene family alignment because of lack of expression,
gene loss, or putative lineage-specific duplication (Fig. S1 and
Table S1).

Matrices and Analyses. Simultaneous alignment and tree estimation
(SATé) (57) alignments of the 852 orthogroups were used to es-
timate phylogenetic relationships through supermatrix, supertree,
and coalescent-based species tree approaches. The concatenated,
untrimmed nucleotide supermatrix included 1,701,170 aligned sites
and 50,715,288 nongap characters. Individual orthogroup matrices
and the supermatrix were also filtered more stringently to in-
vestigate how missing data, highly divergent sequences (possible
contaminants), and data type (nucleotides vs. inferred amino acids)
influenced inferred relationships estimated using contrasting
methods of analysis [RAxML (58) and PhyloBayes (59) super-
matrix analyses, SuperFine (60) supertree analyses, and ASTRAL
(61), a method designed to take into account gene tree in-
congruence resulting from incomplete lineage sorting between
speciation events]. In total, we ran 69 analyses (Table S2) and
compared results to assess robustness to variation in data-filtering
and analysis strategies (see for example, Fig. 4).
All species-tree estimates were assessed for resolution of hy-

pothesized relationships among focal clades, e.g., the identity of the
sister group to embryophytes (land plants); relationships among
bryophytes [Marchantiophyta (liverworts), Bryophyta (mosses),
Anthocerotophyta (hornworts)]; and placement of Gnetales (Fig.
1). The tree estimates produced from most analyses were highly
concordant and largely consistent with the relationships reflected in
the maximum-likelihood (ML) tree estimated from nucleotides at
the first and second codon positions (Figs. 2 and 3). However,
differences among analytical approaches were observed with respect
to the resolution of relationships that have been long-debated in the
plant systematics literature (see below) (Fig. 4).
Some of the discordance among trees (i.e., strongly supported

relationships that are incongruent among trees), derived from
different methods of analysis, could be attributed to model
misspecification. The most extreme contrast in inferred rela-
tionships was observed between analyses of nucleotide align-
ments including all three codon positions and analyses of only
first and second nucleotide positions or those based on amino
acid alignments (Fig. 4). The large variation observed in GC
content at the third codon position (Figs. S2 and S3) is not
accounted for in the ML analyses of nucleotide alignments under
the GTR+Gamma substitution model. Therefore, in the fol-
lowing discussion we focus on results from analyses of first and
second codon position and amino acid alignments.

Relationships Among Streptophytic Algal Lineages and Land Plants.
In all analyses, Streptophyta are monophyletic, with a clade in-

cluding Mesostigmatales, Chlorokybales, and Spirotaenia re-
solved as sister to all remaining streptophytes. The phylogenetic
position of Spirotaenia minuta (sister to Chlorokybus) does not
come as a surprise because previous analyses of rbcL and
SSUrDNA datasets including three other species of Spirotaenia
(including the type species, Spirotaenia condensata) showed that
this genus does not belong in the Zygnematophyceae, but rather
is affiliated with Chlorokybus and Mesostigma (62). Thus, taxo-
nomic circumscription of Spirotaenia and traditional placement
of all Spirotaenia species in the Zygnematophyceae are errone-
ously based on homoplasious morphological characters, in-
cluding the shape of the chloroplast and sexual reproduction by
conjugation. No analysis provided strong support for a sister
relationship between Coleochaetales and embryophytes, and
most analyses rejected a sister relationship between Charales and
embryophytes (Fig. 4 and Fig. S4). Analyses of nucleotide data
that included third positions offered weak support for Charales
sister to embryophytes, but as mentioned above, this is likely an
artifact of among-lineage variation in nucleotide frequencies at
the third codon position (Fig. S2).
The results presented here provide strong support for a sister

group relationship between Zygnematophyceae and embryo-
phytes in analyses of amino acids and first and second codon
positions (Figs. 2–4), a relationship that has been inferred in
recent analyses of plastomes (8, 36) and a smaller set of nuclear
gene sequences (27, 29). Whereas most individual gene trees did
not provide strong support for any of the hypotheses illustrated
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Fig. 1. Hypothesized land plant relationships evaluated for all matrices
included in this study. Support for these hypotheses was evaluated across all
69 analyses performed in this study. For each hypothesis shown here, a “bar”
(e.g., “GA” in the “Sister to land plants” block) indicates unspecified reso-
lution within a grade. Dashed lines indicate lineages or grades with place-
ments that are not relevant to the specified hypothesis. Note that
differences with the nonfocal parts of the topology may exist in the given
references (see below), and that additional studies may have recovered
similar topologies. Abbreviations used: ANA, Amborellales, Nymphaeales,
Austrobaileyales grade; Bryo, bryophytes; Char, Charales; Chl, Chloranthales;
Col, Coleochaetales; Con, conifers; Cy, cycads; Eudi, eudicots; GA, green al-
gae; Gko, Ginkgo; Gne, Gnetales; Gym, gymnosperms; Hw, hornworts; LP,
land plants; Lv, liverworts; Mag, magnoliids; Mo, mosses; Mono, monocots;
Pin, Pinaceae; VP, vascular plants; Zygn, Zygnematophyceae. Sister to land
plants: Timme et al. (27), Karol et al. (34), Finet et al. (35), Bryophytes: Qiu
et al. (42), Chang and Graham (38), Renzaglia et al. (44), Nishiyama et al. (41),
Nickrent et al. (40); Gymnosperms: Bowe et al. (92), Lee et al. (52), Chaw
et al. (91); Angiosperms: Qiu et al. (12), Burleigh et al. (15), Soltis et al. (14),
Soltis et al. (105).
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in Fig. 1, a small proportion of gene trees did exhibit well-sup-
ported conflict with each hypothesis (Figs. 2 and 3, and Fig. S3).
This discordance was not unexpected and may be because of
incomplete sorting of ancestral variation between speciation events
represented by short internodes in the species phylogeny (63, 64)
(Fig. 2). ASTRAL analyses (61) of gene trees estimated from
amino acid alignments recovered strong support for Zygnemato-
phyceae as sister to land plants (Fig. 4). ASTRAL analyses of in-
frame nucleotide data, when first and second positions alone are
considered, recovered the same relationship but with weaker sup-
port (Figs. 3 and 4); after filtering fragmentary sequences to im-
prove gene tree resolution, we again recovered this relationship
with high support (Fig. 4). As seen in our supermatrix and super-
tree analyses, ASTRAL analyses of nucleotide data including all
codon positions recovered trees with weak support for Chara as the
sister lineage to land plants. Again, this result is interpreted as an
artifact of among-lineage variation in character-state frequencies.
Zygnematophyceae are a group of unicellular or filamentous

streptophyte algae that sexually reproduce by conjugation, rather
than flagellate cells (65). The absence of motile cells and plas-
modesmata in Zygnematales may be interpreted as secondary
reduction of morphological complexity following divergence from
a common ancestor shared with Charales and Coleochaetales,

which is consistent with their mode of reproduction (29).
Phragmoplast presence and structure is also consistent with this
interpretation of secondary loss, as they seem to be absent from
most Zygnematophyceae, but simplified phragmoplasts have been
characterized for the filamentous Spirogyra (31, 66), Mougeotia
(33), and likely Zygnema (67). Fowke and Pickett-Heaps (31) sug-
gested that the rudimentary phragmoplast seen in Spirogyra may
represent an ancestral form, but placement of Zygnematophyceae
as sister to land plants implies that a simplified (rather than an-
cestral) phragmoplast existed in the zygnematophycean stem line-
age and was independently lost within the two major zygnematalean
clades (Figs. 2 and 3). The possibility of independent origins of
phragmoplasts in multiple streptophyte lineages appears unlikely;
however, the phycoplast, a collection of microtubules serving
a similar function in cytokinesis relative to the phragmoplast but
forming parallel to the division plane (in contrast to the phragmo-
plast), did evolve independently in the lineage leading to the core
chlorophytes (68, 69). Reports on the occurrence of phragmoplast-
mediated cytokinesis in the ulvophycean chlorophytes Trentepohlia
and Cephaleuros (70), however, should be interpreted with caution,
as functional studies are lacking and structurally this system is more
reminiscent of a rudimentary telophase spindle than a genuine
streptophyte phragmoplast.
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Bryophyte Relationships.Whereas the monophyly of each bryophyte
lineage—Bryophyta (mosses), Anthocerotophyta (hornworts), and
Marchantiophyta (liverworts)—is strongly supported here (Figs. 2–
4), most of our results reject the current, widely accepted hypothesis
that liverworts are sister to all other land plants (38, 42, 71). Fur-
thermore, the widely accepted view that liverworts, mosses, and
hornworts are, respectively, successive sister groups to vascular
plants (25, 42, 43)—which is strongly supported by parsimony
mapping of mitochondrial intron gains (42) and recent mito-
chondrial phylogenomic analyses (72)—is not recovered in any
of our analyses.
Previous analyses of protein-coding genes extracted from whole

plastome sequences had suggested that the three bryophyte divi-
sions (Bryophyta, Anthocerotophyta, and Marchantiophyta) form
a clade (41, 73; but see ref. 71). Bryophytes are resolved as
monophyletic in several analyses here, including 3 of 12 amino
acid supermatrix analyses and all ASTRAL analyses based on
either amino acid data or in-frame nucleotide data without the
inclusion of third positions (Figs. 2–4). Supertree analyses of ML
gene trees estimated from first and second codon position align-
ments and amino acids also favored this hypothesis (Fig. S4). For
all analyses in which the three bryophyte lineages were resolved as
a clade, mosses and liverworts formed a clade. In cases where
a bryophyte clade was not recovered, our analyses generally re-
covered a clade with mosses and liverworts as sister to the tra-

cheophytes, with the hornworts sister to all other (nonhornwort)
land plants (Figs. 2–4), which is consistent with some previously
published multigene analyses (40). Recent analyses of complete
plastomes (8) and a PhyloBayes (59) analysis of amino acids under
the CAT+GTR+Gamma substitution model (Fig. 4) (FAA.604-
genes.trimExtensively.phylobayes.CATGTR) suggest a similar
result, but with hornworts rather than a moss+liverwort clade sister
to vascular plants. Independent chains in some PhyloBayes analyses
(CAT+GTR+Gamma analysis of first and second codon positions
and CAT analysis of amino acids) recovered mosses, liverworts, and
hornworts in a grade as successive sister clades to the tracheophytes
(alignments and trees available in iPlant data store; mirrors.
iplantcollaborative.org/onekp_pilot).
ML analyses were performed with the Gamma model of rate

heterogeneity. Full GTRGAMMA and the per site rate (PSR)
approximation of Gamma implemented in RAxML (74) pro-
duced nearly identical trees (Fig. 4). In addition, we performed
partitioned analyses that assigned different amino acid substitution
matrices or GTR matrices (for DNA) to different partitions of the
data (see Materials and Methods for details). The CAT model
implemented in PhyloBayes uses a Dirichlet process to model
among-site variation in equilibrium state frequencies (75). The
additional complexity of the CAT+GTR+Gamma model relative
to the GTR+Gamma model may more closely match true variation
in the substitution process (26, 75–77), but the difference in trees
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estimated using CAT+GTR+Gamma models on nucleotide (first
and second codon positions) and amino acid alignments suggests
that this model may still be too simple for concatenated alignments
relative to the true gene coalescence and substitution processes (see
also ref. 72). The placement of hornworts and a moss+liverwort
clade as successively sister to vascular plants is consistent with
analyses based on morphological and developmental characters (78,
79), including dextral sperm in hornworts rather than sinistral
sperm, as in all other land plants, and the retention of the pyrenoid,
a plastid structure that is the site of RUBISCO localization, shared
by hornworts and streptophytic algae (reviewed in ref. 80). The
possibility that some of these trait mappings are the product of
evolutionary convergence should also be considered, and seems
likely in the case of the pyrenoid (81). The significance of other
morphological similarities is also not yet clear. For example, the
development of gametangia in hornworts resembles antheridial (44,
82) and archegonial (82) development in monilophytes, whereas
those of the liverworts and mosses are autapomorphic, suggesting
a closer relationship between hornworts and vascular plants. A
comparison can also be made with respect to the development of
the embryo and the young sporophyte. The hornwort embryo and
sporophyte have no apical growth at any stage, but rather exhibit an
intercalary meristem. In contrast, mosses and monilophytes have
apical growth on both ends of the sporophyte, although basal apical
growth is ephemeral in the former. The possibility of multiple ori-
gins of the multicellular sporophyte in land plants can therefore be
considered (83): once with intercalary growth, as in the hornworts,
and once with apical growth, as in mosses and tracheophytes (liv-
erworts have neither intercalary nor apical growth). Ultimately, this
finding underscores the difficulty in placing hornworts—or bryo-
phytes in general—within the phylogeny of land plants based on
current evidence from morphology alone.

In summary, three primary hypotheses emerge from our
analyses with respect to the resolution of the earliest branching
events in land plant phylogeny: (i) (hornworts, ((liverworts,
mosses), vascular plants)) supported in most ML analyses of nu-
cleotide and amino acid supermatrices; (ii) [(liverworts, mosses),
(hornworts, vascular plants)], supported by the PhyloBayes anal-
ysis of amino acids; and (iii) [(hornworts, [mosses, liverworts]),
vascular plants], supported by supertree and ASTRAL analyses of
amino acids and first and second codon positions and some amino
acid supermatrix analyses. However, we cannot dismiss alternative
hypotheses recovered by some of our analyses, including [mosses
(liverworts [hornworts, vascular plants])], which is supported by
the PhyloBayes analysis of first and second codon positions (Fig.
4). Caution should be taken in rejecting any of these hypotheses
given the sparse sampling, especially for the hornworts.

Monilophyte and Lycophyte Relationships. Phylogenetic analyses of
multigene (generally plastid) datasets (84–87) have consistently
resolved the lycophytes and monilophytes as successive sister lin-
eages to the seed plants, with the euphyllophytes comprising the
seed-free monilophytes (ferns) and seed-bearing spermatophytes.
Aside from the clearly artifactual placement of Selaginella as sister
to all other land plants in analyses including third codon
positions (mirrors.iplantcollaborative.org/onekp_pilot), our
results support this branching order (Figs. 2 and 3; other
species trees at mirrors.iplantcollaborative.org/onekp_pilot).
The placement of Selaginella has been problematic in previous
analyses (49) and we interpret its misplacement in several ana-
lyses here as a consequence of GC content at the third codon
position, which is more similar to streptophyte algae than to
embryophytes (Fig. S2).
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Fig. 4. Summary of support for hypotheses of land plant relationships across 52 supermatrix and coalescent-based analyses including permutations of the full
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Monilophytes comprise (88) Psilotales (represented here by
Psilotum), Ophioglossales (Ophioglossum), Equisetales (Equisetum),
Marattiales (Angiopteris), and the leptosporangiate ferns (Cyathea
and Pteridium). Here, Marattiales are consistently resolved as sister
to a clade comprising Ophioglossales and Psilotales. Although the
results here are inconsistent with previous analyses (84–86, 88), the
resolution of the backbone phylogeny of ferns has been prob-
lematic (86), and we therefore interpret our results tentatively.
Within the monilophytes, the placement of Equisetum varies
(species trees at mirrors.iplantcollaborative.org/onekp_pilot) among
analyses, as expected given the instability in the placement of
Equisetum in many previous analyses (49, 84–86, 88). The number
of loci used here to resolve the backbone of the streptophyte
phylogeny is unprecedented; although extinction may play
a significant role in the difficulty of reconstructing these rela-
tionships, analyses that include additional taxon sampling may
contribute to a more robust set of relationships within land plant
clades, particularly among fern lineages.

Gymnosperm Relationships.A well-supported seed plant clade was
found, composed of strongly supported angiosperm and gym-
nosperm clades in all analyses (Figs. 2 and 3). Analyses varied,
however, in the resolution of relationships among extant gym-
nosperms (Fig. 4). Whereas supermatrix analyses of alignments
including all three codon positions placed Gnetales as sister to
all other extant gymnosperm lineages (a hypothesis seen in refs.
52, 89, and 90), analyses of amino acids and of first and second
codon positions placed Gnetales as sister to the Coniferales
[“Gnetifer” hypothesis (Fig. 1); supertree and ASTRAL results
(Figs. 1 and 3, and Fig. S4)] (91) or sister to the Pinaceae, nested
within the Coniferales [“Gnepine” hypothesis (Figs. 1 and 2)]
(26, 29, 35, 92–95). All but one of the ASTRAL and supertree
analyses supported the Gnetifer hypothesis. Although most in-
dividual gene trees do not exhibit high bootstrap values, there
were more gene trees exhibiting well-supported conflict with the
Gnepine clade (Fig. 2) than the conifer clade (Fig. 3), and slightly
more gene trees provide well-supported phylogenetic signal for
the monophyly of Coniferales over a Gnetales+Pinaceae clade
(Fig. S3). However, placement of Gnetales as sister to Pinaceae in
most supermatrix analyses is consistent with previously published
analyses of concatenated gene alignments that explicitly aimed to
reduce long-branch attraction artifacts by filtering the most rapidly
evolving sites (93, 95, 96) or implementing the CAT model dis-
cussed above (26, 75). In any case, these results are consistent with
rapid diversification among the Gnetales and two conifer lineages;
a scenario under which incomplete lineage sorting may mislead
supermatrix analyses.

Angiosperm Relationships. Darwin famously referred to the rapid
diversification of flowering plant lineages in the early history of
angiosperms as an “abominable mystery” (97) and resolution of
the earliest branching events remains controversial. Since publi-
cation of a series of landmark papers that identified Amborella
trichopoda, Nymphaeales, and Austrobaileyales as successive sister
lineages relative to all other extant angiosperms (98–101), all
analyses performed with rich taxon sampling have supported A.
trichopoda (7, 12, 14, 101–105) or a Nymphaeales+A. trichopoda
clade (12, 106, 107) as sister to all other extant angiosperm line-
ages. All of our analyses placed A. trichopoda as sister to all other
angiosperms (Figs. 2–4; species trees at mirrors.iplantcollaborative.
org/onekp_pilot), with the Nymphaeales (represented by Nuphar
advena) and Austrobaileyales (represented by Kadsura heteroclite)
as successive sister lineages (i.e., the Amborellales, Nymphaeales,
and Austrobaileyales or ANA grade) to the remaining angio-
sperms. This result is consistent with recent phylogenomic analyses
of nuclear genes with many fewer sampled angiosperms and genes
(35, 52, 89, 90, 107) and most earlier publications (98–101).

Resolving relationships among eudicots, monocots, and mag-
noliids has been a recalcitrant problem. All possible relationships
among these three clades have been reported in the literature,
but most recent analyses of plastid genomes have reconstructed
magnoliids+Chloranthales as sister to (monocots + (eudicot+
Ceratophyllaceae)) (7, 14, 102). Resolution of these major an-
giosperm lineages varied among analyses. Ceratophyllaceae were
not included in our analysis, but the Phylobayes CAT+GTR
analyses of amino acid supported a magnoliid+Chloranthales
(represented by Sarcandra glabra) clade sister to eudicots+
monocots (Fig. 4) (7, 14, 102). In contrast, RAxML GTR+
Gamma supermatrix, supertree, and ASTRAL analyses of amino
acid and nucleotide alignments placed monocots outside of
a (magnoliid, Chloranthales, eudicot) clade (Figs. 2–4). The
placement of S. glabra (Chloranthales) varied between super-
matrix analyses performed with and without filtering of trees in-
cluding extreme branches or BLAST-based approaches to the
filtering of contaminants (Figs. 2 and 4) (see Materials and Methods
for more details), but all supertree and ASTRAL analyses
recovered Sarcandra as sister to the magnoliids (Figs. 3 and 4).
Relationships within the magnoliid, monocot, and eudicot

clades are largely in line with previously published analyses (14,
108), with the exception of the placement of Vitis as sister to
the rest of the core eudicots including rosids, asterids, and Car-
yophyllales (Figs. 2 and 3; trees at mirrors.iplantcollaborative.org/
onekp_pilot). Vitis is a rosid, but its placement can be problematic
when taxon sampling is poor (6).
Variation in relationships inferred by different methods of

analysis may be suggestive of model misspecification or variation
in gene histories, perhaps because of incomplete lineage sorting.
Problems with model misspecification may be resolved with the
development of richer evolutionary models and our ongoing
work to increase taxon sampling. Increased taxon sampling can
reduce the effects of long-branch artifacts that are exacerbated
by overly simplistic models of character evolution (109).

Conclusions
We present here a large-scale, phylogenomic perspective to re-
solving the backbone phylogeny of land plants and their closest
green algal sister groups using a larger taxon set and more nu-
clear genes than have previously been applied to this problem.
Our results are consistent with recent, algae-centric analyses that
report Zygnematophyceae as sister to land plants (27–29, 36).
However, our analyses suggest that the consistently accepted
branching order of bryophytes (successive sister groups of liver-
worts, mosses, hornworts) should be reconsidered. Our results are
largely consistent with a clade comprising mosses and liverworts,
which agrees with recent analyses of plastomes (8); this clade is
either sister to tracheophytes, sister to a clade composed of horn-
worts and tracheophytes, or included in a clade comprising all
three bryophyte lineages (i.e., monophyletic bryophytes). Increased
sampling of hornworts may help resolve their position across all
types of analyses. Within monilophytes, and inconsistent with pre-
vious analyses (84, 86), we consistently recovered Marattiales sister
to Ophioglossales plus Psilotales. We recovered strong support for
a clade including Gnetales and Coniferales but in contrast to many
phylogenomic analyses of plastid genomes (26, 28, 36, 92–95) our
supertree and coalescent-based ASTRAL analyses placed Gnetales
as sister to the Coniferales. Although concordance is not perfect,
our results are generally in agreement with recent analyses of whole
plastome data (8).
Despite the large number of nuclear genes included in this study,

some relationships (e.g., the position of hornworts) remain enig-
matic, perhaps because of extinction and ancient radiation, high-
lighting the need to evaluate the sources of incongruent signal in
large datasets. However, the strength of some relationships in the
face of analytical permutations (e.g., Zygnematophyceae sister to
embryophytes, liverworts sister to mosses, and Amborella sister to
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the remaining angiosperms), and the robust support for relation-
ships inconsistent with currently accepted hypotheses (e.g., mosses
plus liverworts monophyletic), emphasize the value of large nuclear
datasets for phylogenetic reconstruction.

Materials and Methods
Tissue Collection, RNA Extraction, and Sequencing. Plant tissue was collected
for—and provided to the project by—individual collaborators of the 1KP
consortium (Table S1 for details). RNAs were isolated and transcriptomes
were sequenced using protocols described previously (110). Briefly, plant
tissues were collected, RNA was extracted and purified using protocols ap-
propriate to the sample (108), and Illumina libraries were prepared. In some
cases, plant material was shipped to the core sequencing facilities at the
Beijing Genomics Institute (BGI)-Shenzhen and BGI-Hong Kong, in other
cases purified total RNA was shipped to the sequencing facility. Sequencing
libraries were prepared with an insert size of ∼200 bp. Multiple samples
were multiplexed on a single lane of either Illumina GAIIx or HiSeq 2000
systems, with each sample sequenced to an approximate depth of 2 Gb with
paired-end (2 × 75- or 2 × 90-bp) reads. As part of the BGI’s methodology,
read pairs that failed a minimum quality threshold were not de-multiplexed,
and were discarded.

Transcriptome Assembly. RNA-Seq reads were assembled using SOAPdenovo
v1 (111). Assembly was carried out using default parameters, with the ex-
ception of the use of 29-mers in deBruijn graph construction. The associated
GapCloser tool was run as a postprocessing step to complete the assembly.
The identity of the resulting assemblies was verified and checked for con-
tamination through blastn searches against a custom database of 18S ribo-
somal RNA sequences.

Gene Family Circumscription and Transcriptome Sorting. To sort assembled
transcripts into gene families, we constructed an a priori set of gene families
by clustering the protein sequences of 25 sequenced plant genomes using
orthoMCL (54). Clusters were searched to identify gene families that were
predominantly single copy; given the frequency with which genes duplicate,
we did not remove gene families in which a single taxon was represented by
more than one gene (with a maximum of four genes for that taxon). Each
cluster was then aligned using MAFFT (112) and the alignment was then
used to build a profile HMM (pHMM) using HMMER3 (55).

Transcriptome assemblies were translated into matching amino acid and
coding sequences using a strategy modified from TransPipe (113). An initial
BLAST (blastx) (114) against all plant National Center for Biotechnology In-
formation RefSeq proteins identified the best hit, which was then used to
generate a GeneWise (115) translation. The resulting protein sequences were
used to query the 25-genome pHMMs using hmmscan (part of the HMMER3
suite). Bit-scores for matches with e-values better than 1.0e–10 were retained
and a cumulative probability distribution for the bit-scores was assessed to
identify one or more HMMs accounting for 95% of the distribution. Most
transcripts were sorted into a single gene family for which the HMM match
had a probability of 95% or greater, but some transcripts were sorted into
(and retained in) two or more families when bit score probabilities were re-
quired from multiple HMMs in order to reach a 95% confidence level that the
assembly was sorted to a correct gene family (i.e., orthoMCL cluster).

For each gene family inferred to be low-copy, all transcripts that were
sorted into a gene family for a single taxon were aligned to the 25-genome
alignment to assess whether the transcripts could be scaffolded into a single
sequence. Following the alignment step, the reference genome sequences were
removed from the alignment and a consensus sequence was created from the
query sequences using custom Perl scripts (available through the iPlant Discovery
Environment: mirrors.iplantcollaborative.org/onekp_pilot). The number
of non-A, C, T, and G bases in the consensus sequence was used to assess
whether overlapping transcripts were paralogs or perhaps divergent alleles. If
the number of non-A, C, T, and G bases per number of overlapping bases was
greater than 5%, it was inferred that a gene duplication may have occurred in
that lineage. In these cases, a sequence for that taxon/gene combination was
not used in subsequent phylogenetic analyses.

Phylogenetic Analyses.Our 852 gene family files were each aligned using SATé
(57), both as amino acid and nucleotide, resulting in two distinct alignments
per gene family. We also forced nucleotide sequences on the amino acid
alignments using a custom Perl script to obtain codon-preserving alignments
of nucleotide sequences. Gene trees were then reconstructed for each gene
family using RAxML (58) with 200 replicates of bootstrapping (average
bootstrap support was centered around 50% across different gene trees)

(Fig. S4), and based on 10 different starting trees. For each gene family, we
estimated four different gene trees based on: (i) amino acid alignments, (ii)
DNA alignment, (iii) codon alignments (nucleotides forced to the amino acid
alignment), and (iv) codon alignments with third-position removed. Nucle-
otide-based analyses were conducted using the GTR model; for amino acid
analyses, we used a Perl script (publicly available on the RAxML website) to
score an estimated tree topology using different models, and selected the
model that gave the highest likelihood score (Fig. S5). The JTT and JTTF
models (116) had the highest likelihood score for 65% of genes. For han-
dling rate heterogeneity across sites, we used the Gamma model for the
main analyses, but for further exploration of parameters, we used the PSR
approximation to Gamma (74), which consists of searching using 20 rate
categories, and scoring and selecting the best tree using the Gamma model.

For supermatrix analyses, we concatenated all 852 gene alignments (1,701,170
bp), and then created multiple filtered datasets by: (i) removing genes that in-
cluded 50% of taxa or less (674 genes and 1,414,611 bp left); (ii) removing sites
with more than 50% missing characters (436,077 bp remaining); (iii) removing
genes that did not include a sequence from Chara (to test whether its placement
was an artifact of poor gene sampling) or those that had 50% of taxa or less (282
gens and 575,339 bp remaining); (iv) removing taxa from individual genes when
they were on branches at least 25-times longer than the median branch length
(possibly suggesting contamination) for that gene and then removing sites with
at least 50% gaps (final alignment 429,722 bp); and finally (v) an extensive
trimming of sequences using a blastp-based and branch-length–based approach
as the most stringent filter for possible contamination and GBLOCKS to remove
poorly aligned positions. This most stringent filter resulted in the removal of 248
gene families (604 genes and 386,883 bp retained; alignments at mirrors.
iplantcollaborative.org/onekp_pilot). Note that after filtering taxa on long
branches, new gene trees were estimated for genes that had at least one
sequence removed (between 180 and 273 genes for different datasets). These
filtered supermatrix datasets were created for amino acid, codon (nucleotides
forced to the amino acid alignment), and nucleotide alignments. In addition,
we created a set of datasets where the third codon position was removed.

ML supermatrix analyses were performed using RAxML v7.3 (43). In all
nucleotide analyses, the GTR model was used. Because JTT and JTTF models
were selected as the best model for a majority of our gene families, we used
JTTF in our unpartitioned RAxML analyses. Similar to gene trees, the Gamma
model of rate heterogeneity across sites was used for the main analyses, and
the PSR approximation for the exploratory analyses. Finally, we performed
partitioned RAxML analyses to better handle rate heterogeneity across
genes. For codon alignments, we used the K-means clustering algorithm
(117) to partition the data into 15 clusters of genes based on the GTR rate
matrices calculated during gene tree estimation. We empirically observed
that k = 15 accounts for most variation, while avoiding partitions that are
too small. For amino acid alignments, the model selected for each gene
family in gene tree estimation process was used to group loci together into
11 partitions, each defined by one substitution matrix. Each RAxML super-
matrix analysis used 10 different MP trees as initial starting trees; the
resulting RAxML tree with the best final ML score was selected as the final
tree. Support was inferred for branches on the final tree from 100
bootstrap replicates.

The extensively trimmed amino acid and nucleotide supermatrices were
analyzed with the site-heterogeneous CAT+Gamma model using PhyloBayes
MPI (118). For the amino acid and nucleotide alignments, the CATGTR+
Gamma model, which is consistently a better fit to the data than the CAT+
Gamma model and any site-homogeneous models (76, 77), was also used.
However, because of a high computational burden, perfect convergence of
the two chains was not reached. Although the chains reached a plateau for
all monitored values (e.g., likelihood or number of profiles), the topology
was not identical for the two independent chains; however, the differences
were limited to clades within angiosperms with very short internal branches.
Nevertheless, the topologies recovered by the three models are almost
identical to that in Figs. 2 and 3. The most significant differences are: (i)
[hornworts,([liverworts,mosses],tracheophytes)] versus [mosses, (liverworts,
[hornworts,tracheophytes])] (AA-CAT) or [(mosses, liverworts),(hornworts,
tracheophytes)] (AA-CATGTR and NT-CATGTR), (ii) monocots sister to eudi-
cots+magnoliids versus sister to eudicots, and (iii) cycadales sister to Ginkgo
versus sister to all remaining gymnosperms (AA-CATGTR and NT-CATGTR).

Coalescent-based analyses were run using ASTRAL (61) and the multilocus
bootstrapping procedure (119) was used to draw support values. ASTRAL
estimates species trees from unrooted gene trees as input, and maximizes
the number of quartet trees shared between the gene trees and the species tree.
ASTRAL has been shown to be statistically consistent under the multispecies
coalescent model [using results from Allman et al. (120) and Degnan (121) that
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show four-taxon species trees do not have anomaly zones], and yields better
accuracy than other coalescent-based methods in simulated studies (61).

ASTRAL runs were performed based on four types of input: (i) all gene
trees, (ii) on only gene trees with more than 50% of taxa, (iii) on gene trees
estimated after removing fragmentary data (i.e., sequences with more than
66% gaps), and (iv) on gene trees estimated after taxa on long branches
were removed. The filtering of fragmentary data were in particular impor-
tant for accurate gene tree estimation, because fragmentary sequences can
negatively impact the accuracy of gene trees and hence the species tree
(inclusion of fragmentary data does not have the same kind of impact on the
concatenation analyses).

The multilocus bootstrapping was performed as follows. First, a main
ASTRAL tree was estimated withML gene trees as input. We then created 200
replicate input datasets, using 200 bootstrap replicates available for each
gene (by randomly associating replicates from different genes together). On
each of these 200 replicates, we estimated an ASTRAL tree, andwe used these
to infer support on the main tree. Conflict between specific branches in the
species tree and gene trees was calculated by finding the percentage of gene
trees that were incompatible with a given branch in the species tree after
collapsing branches with support below 75%.

In addition to ASTRAL, we also performed supertree analyses using
Superfine-MRP (60), with TNT (122) used for the MRP step. The supertree
analyses used the same multilocus bootstrapping (119) procedure that was
used for ASTRAL. More details about phylogenetic reconstruction are avail-
able in SI Materials and Methods and Dataset S1. A compete description of
resources associated with the 1KP data has been published (123).
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