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Abstract. Whole genome doubling (WGD), a frequent occurrence dur-
ing the evolution of the angiopsperms, complicates ancestral gene order
reconstruction due to the multiplicity of solutions to the genome halving
process. Using the genome of a related species (the outgroup) to guide the
halving of a WGD descendant attenuates this problem. We investigate
a battery of techniques for further improvement, including an unbiased
version of the guided genome halving algorithm, reference to two related
genomes instead of only one to guide the reconstruction, use of draft
genome sequences in contig form only, incorporation of incomplete sets
of homology correspondences among the genomes and addition of large
numbers of “singleton” correspondences. We make use of genomic dis-
tance, breakpoint reuse rate, dispersion of sets of alternate solutions and
other means to evaluate these techniques, while reconstructing the pre-
WGD ancestor of Populus trichocarpa as well as an early rosid ancestor.

1 Introduction

The reconstruction of the gene order in ancestral genomes requires that we make
a number of choices, among the data on which to base the reconstruction, in the
algorithm to use and in how to evaluate the result. In this paper we illustrate
an approach to making these choices in the reconstruction of the ancestor of the
poplar Populus trichocarpa genome. This species has undergone whole genome
duplication [3,11,14] followed by extensive chromosomal rearrangement, and is
one of four angiosperm genomes, along with those of Carica papaya (papaya),
Vitis vinifera (grapevine) and Arabidopsis thaliana, that have been sequenced
to date, shown in Figure 1.
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Fig. 1. Phylogenetic relationships among angiosperms with sequenced genomes. The
circles indicate likely whole genome doubling events. The circle in the Populus lineage,
representing the locus of the WGD event at the origin of the willow-poplar family,
and the square, representing the ancestor of the rosid dicotyledons, indicate the target
ancestors we reconstruct in this paper.

We have been developing methods to incorporate descendants of whole genome
doubling into phylogenies of species that have been unaffected by the doubling
event. The basic tool in analyzing descendants of whole genome doubling is
the halving algorithm [4]. To overcome the propensity of the genome halving
procedure to produce numerous, widely disparate solutions, we “guide” the ex-
ecution of this procedure with information from genomes from related species
[18,10,17,19,20], which we call outgroups. This, ipso facto, integrates the whole
genome doubling descendant into the phylogeny of the related species.

Issues pertaining to data include

Homology sets. Can we use defective sets of homologs, i.e., those which
have only one copy in the duplicated genome or are missing the ortholog
completely in the guide genome?
Singletons. Should we purge singletons from the data, i.e., sets of homolo-
gous markers that have no homologous adjacent markers in common in the
either the duplicated genome or the outgroup?
Contigs. Can we use guide genomes that are not fully assembled, but are
available only as sets of hundreds or thousands of contigs?

Another choice to be made during reconstruction has to do with the guided
halving algorithm itself. The original genome halving problem, with no reference
to outgroup genomes, can be solved in time linear in the number of markers [4].
We can introduce information from an outgroup in order to guide this solution,
without compromising the optimality of the result and without serious increase
in computing time [17,20]. We call this constrained guided halving. The true,
unconstrained, guided halving problem, however, where the solution ancestor
need not be a solution of the original halving problem, is likely to be NP-hard
[12]. In the heuristics necessary for these two approaches, there is a trade-off
between the speed and quality of constrained halving versus the unbiased and
possibly better solution obtainable by unconstrained halving.
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Once we make our choices of data and algorithm, we may ask how to evaluate
the results. As with most evolutionary reconstructions, this evaluation is neces-
sarily completely internal, since there is no outside reference to check against,
except simulations. There are many indices for evaluating a reconstruction.

Distance. Most important, there is the objective function; here our genomic
distance definition attempts to recover the most economical explanation of
the observed data, namely the minimum number of rearrangement events
(reversals, reciprocal translocations, chromosome fusions/fissions, transposi-
tions) required.
Reuse rate. Each rearrangement operation can create at most two break-
points in the gene-by-gene alignment of two genome and its ancestor. When
rearranged genomes are algorithmically reconstructed, however, some break-
points may be reused. If d is the number of rearrangements and b the num-
ber of breakpoints, the reuse [6] variable r = 2d/b can take on values in
1 ≤ r ≤ 2. Completely randomized genomes will have r close to 2, so that if
an empirical comparison has r ∼ 2, we cannot ascribe much significance to
the details of the reconstruction [9]. This is particularly likely to occur for
genomes that are only very distantly related.
Dispersion. The motivation for guided halving is to resolve the ambiguities
inherent in the large number of solutions. One way to quantify the remaining
non-uniqueness is to calculate the distances among a sample of solutions.

In this paper we will refer repeatedly to a main tabulation of results, Table 1,
in which we discover the unexpected rapid evolution of the Carica gene order
in comparison with that of Vitis. In Section 2, we report on the origin and pro-
cessing of our gene-order data and the construction of the full and defective
homology sets. Then, in Section 3, we discuss the formulation of genomic dis-
tances and the halving problems, and sketch a new algorithm for unconstrained
guided halving. In Section 4 we evaluate the utility of singletons and of defective
homology sets. Then, in Section 5 we assess the two guided halving algorithms
on real and simulated data. Section 6 proposes a way to use unassembled genome
sequence in contig form as input to the reconstruction algorithm, an approach
that could potentially have wide use in gene order phylogeny. In Section 7 we
demonstrate the phylogenetic validity of reconstructing the Populus ancestor us-
ing either Vitis or Carica, or both, as outgroups. Note that we have not included
Arabidopsis in our analyses; as will be explained in Section 8, this was dictated
by a paucity of data in the appropriate configurations.

2 The Populus, Vitis and Carica Data

Annotations for the Populus, Vitis and Carica genomes were obtained from
databases maintained by the U.S. Department of Energy’s Joint Genome In-
stitute [14], the French National Sequencing Center, Genoscope [5], and the
University of Hawaii [8], respectively. An all-by-all BLASTP search was run on
a data set including all Populus and Vitis protein coding genes, and orthoMCL
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[7] was used to construct 2104 full and 4040 defective gene sets, in the first
case, denoted PPV, containing two poplar paralogs (genome P) and one grape
ortholog (genome V), and in the second case, denoted PV or PP, missing a copy
from either P or V. This was repeated with Populus and Carica, genomes P and
C, respectively, to obtain 2590 full (PPC) and 4632 defective (PC or PP) sets.
The location on chromosomes (or contigs in the case of Carica) and orientation
of these paralogs and orthologs was used to construct our database of gene orders
for these genomes. Contigs containing only a single gene were discarded from the
Carica data.

3 Genome Distance, Breakpoint Graph, Guided Halving

Genome comparison algorithms generally involve manipulations of the bicoloured
breakpoint graph [1,13] of two genomes, called the black and the gray genomes, on
the same set of n genes, where two vertices are defined representing the two ends
of each gene, and an edge of one colour joins two vertices if the corresponding gene
ends are adjacent in the appropriate genome. Omitting the details pertaining to
the genes at the ends of chromosomes, the genomic distance d, i.e., the minimum
number of rearrangements necessary to transform one genome into the other, sat-
isfies d = n− c, where c is the number of alternating colour cycles making up the
breakpoint graph [16].

Then the genome halving problem [4] asks, given a genome T with two copies
of each gene, distributed in any manner among the chromosomes, to find the
“ancestral” genome, written A ⊕ A, consisting of two identical halves, i.e., two
identical sets of chromosomes with one copy of each gene in each half, such that
the rearrangement distance d(T, A⊕A) between T and A⊕A is minimal. Note
that part of this problem is to find an optimal labeling as “1” or “2” of the two
genes in a pair of copies, so that all n copies labeled “1” are in one half of A⊕A
and all those labeled “2” are in the other half. The genome A represents the
ancestral genome at the moment immediately preceding the WGD event giving
rise to A ⊕ A.

The guided genome halving problem [18] asks, given T as well as another
genome R containing only one copy of each of the n genes, find A so that
d(T, A ⊕ A) + d(A, R) is minimal. The solution A need not be a solution to
the original halving problem.

In previous studies [18,10,17], we found that the solution of the guided halving
problem is often a solution of the original halving problem as well, or within a
few rearrangements of such a solution. This has led us to define a constrained
version of the guided halving problem, namely to find A so that A ⊕ A is a
solution to the original halving problem and d(T, A ⊕ A) + d(A, R) is minimal.
This has the advantage that a good proportion of the computation, namely
the halving aspect, is guaranteed to be rapid and exact, although the overall
algorithm, which is essentially a search among all optimal A, remains heuristic.
Without sketching out the details of the lengthy algorithm, the addition of gray
edges representing genome A to the breakpoint graph, as in Figure 2, must favour
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Table 1. Guided halving solutions with and without singletons, constrained and un-
constrained heuristics, Vitis or Carica as outgroup, and all combinations of full and
defective homolgy sets. A: pre-doubling ancestor of Populus, A⊕A: doubled ancestor,
PPV, PPC: full gene sets, PP: defective, missing grape or papaya ortholog, PV,PC:
defective, missing one poplar paralog. d: genomic distance, b, number of breakpoints,
r = 2d/b: the reuse statistic.

genes in A, d(A, V itis) d(A⊕A, Populus) total
data sets with singletons d b r d b r d

Solutions constrained to also be solutions of genome halving

PPV 2104 638 751 1.70 454 690 1.32 1092
PPV,PP 2940 649 757 1.71 737 1090 1.35 1386
PPV,PV 5308 1180 1331 1.77 1083 1457 1.49 2263
PPV,PP, PV 6144 1208 1363 1.77 1337 1812 1.48 2545

Solutions unconstrained

PPV 2104 593 734 1.62 512 733 1.40 1105
PPV, PP 2940 616 752 1.64 778 1119 1.39 1394
PPV,PV 5308 1121 1307 1.72 1147 1486 1.54 2268
PPV,PP,PV 6144 1129 1328 1.70 1437 1871 1.54 2566

genes in A, d(A, Carica) d(A⊕A, Populus) total
data sets with singletons d b r d b r d

Solutions constrained to also be solutions of genome halving

PPC 2590 896 1152 1.56 565 823 1.37 1461
PPC, PP 3478 905 1158 1.56 884 1282 1.38 1789
PPC,PC 6334 1892 2314 1.64 1262 1700 1.48 3154
PPC,PP,PC 7222 1925 2341 1.64 1541 2065 1.49 3466

Solutions unconstrained

PPC 2590 864 1125 1.54 628 870 1.44 1492
PPC, PP 3478 873 1125 1.55 951 1318 1.44 1824
PPC,PC 6334 1859 2277 1.63 1321 1742 1.52 3180
PPC,PP,PC 7222 1877 2313 1.62 1617 2126 1.52 3494

genes in A, d(A, V itis) d(A⊕A, Populus) total
data sets without singletons d b r d b r d

Solutions constrained to also be solutions of genome halving

PPV 2020 560 661 1.69 346 541 1.28 906
PPV,PP 2729 594 690 1.72 453 714 1.27 1047
PPV,PV 4203 573 686 1.67 751 1031 1.46 1324
PPV,PP, PV 4710 675 797 1.69 856 1211 1.41 1531

Solutions unconstrained

PPV 2020 545 652 1.67 375 564 1.33 920
PPV, PP 2729 567 681 1.67 493 745 1.32 1060
PPV,PV 4203 544 674 1.61 782 1034 1.51 1326
PPV,PP,PV 4710 631 785 1.61 916 1250 1.47 1547

genes in A, d(A, Carica) d(A⊕A, Populus) total
data sets without singletons d b r d b r d

Solutions constrained to also be solutions of genome halving

PPC 2464 772 1014 1.52 412 607 1.36 1184
PPC, PP 3226 812 1058 1.53 536 809 1.33 1348
PPC,PC 4651 779 1054 1.48 774 1050 1.47 1554
PPC,PP,PC 5234 898 1206 1.49 892 1253 1.42 1790

Solutions unconstrained

PPC 2464 758 1001 1.51 454 639 1.42 1212
PPC, PP 3226 796 1046 1.52 584 839 1.39 1380
PPC,PC 4651 764 1041 1.47 804 1090 1.48 1568
PPC,PP,PC 5234 861 1178 1.46 952 1303 1.46 1813
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Fig. 2. Choice of gray edge to add at each stage of the reconstruction of A and A ⊕
A. Each black edge in the diagram represents either an adjacency in T or R or an
alternating colour path with a black edge at each end point. If vertex w is copy “1” in
T then w̄ is copy “2”, and vice versa. (a) Configuration requiring the creation of three
cycles, two in the breakpoint graph of T and A⊕A, and one in the breakpoint graph of
A and R. (b) Configuration requiring the creation of two cycles in the breakpoint graph
of T and A ⊕ A, necessary for A ⊕ A to be a solution of the genome halving problem.
(c) Alternative configuration if solution of guided halving A⊕A is not also required to
be a solution of the halving problem. (d) Look-ahead when there are no configurations
(a), (b) or (c). Here the addition of three gray edges creates a configuration (c).

configuration (b) over (c), even though there are as many cycles created by (c) as
by (b). This is a consequence of the original halving theory in Ref. [4]. Otherwise
A⊕A may not be a halving solution. This, however, may bias the reconstruction
of A towards T and away from R. For the present work, we implemented a new
version of the algorithm, as sketched in Section 3.1, treating configurations (b)
and (c) equally in constructing A. The choice among two or more configurations
of form (b) or (c) is based on a look-ahead calculation of what effect this choice
will have on the remaining inventory of configurations of form (b) and (c). The
new algorithm requires much more computation, but its objective function is
better justified.

3.1 The New Algorithm

First we define paths, which represent intermediate stages in the construction of
the breakpoint graph comparing T and A⊕A and the breakpoint graph compar-
ing A and R. Then we define pathgroups, which focus on the three current paths
leading from three “homologous” vertices in the graph, namely two copies in T
and one in R. Note that each vertex represents one of the two ends of a gene.
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Paths. We define a path to be any connected fragment of a breakpoint graph,
namely any connected fragment of a cycle. We represent each path by an un-
ordered pair (u, v) = (v, u) consisting of its current endpoints, though we keep
track of all its vertices and edges. Initially, each black edge in T is a path, and
each black edge in R is a path.

Pathgroups. A pathgroup, as in Figure 2, is an ordered triple of paths, two in
the partially constructed breakpoint graph involving T and A⊕A and one in the
partially constructed breakpoint graph involving R and A, where one endpoint
of one of the paths in T is the duplicate of one endpoint of the other path in T
and both are orthologous to one of the endpoints of the path in R. The other
endpoints may be duplicates or orthologs to each other, or not.

In adding pairs of gray edges to connect duplicate pairs of terms in the break-
point graph of T versus A ⊕ A, (which is being constructed), our approach is
basically greedy, but with a careful look-ahead. We can distinguish four differ-
ent levels of desirability, or priority, among potential gray edges, i.e., potential
adjacencies in the ancestor.

Recall that in constructing the ancestor A to be close to the outgroup R,
such that A ⊕A is simultaneously close to T , we must create as many cycles as
possible in the breakpoint graphs between A and R and in the breakpoint graph
of A ⊕ A versus T . At each step we add three gray edges.

– Priority 1. Adding the three gray edges would create two cycles in the break-
point graph defined by T and A⊕A, by closing two paths, and one cycle in
the breakpoint graph comparison of A with the outgroup, as in Figure 2a.

– Priority 2. Adding three gray edges would create two cycles, one for T and one
for the outgroup, or two for T and none for the outgroup, as in Figure 2b and c.

– Priority 3. Adding the gray edges would create only one cycle, either in the
T versus A ⊕ A comparison, or in the R versus A comparison. In addition,
it would create a higher priority pathgroup, as in as in Figure 2d.

– Priority 4. Adding the gray edges would create only one cycle, but would
not create any higher priority pathgroup.

Thealgorithmsimply completes the steps suggestedby thehighestprioritypath-
group currently available, choosing among equal priority pathgroups according to
a look-ahead to the configuration of priorities resulting from competing moves.

At each step, we must verify that a circular chromosome is not created, oth-
erwise the move is blocked. As with Ref. [4] this check requires a constant time.
The algorithm terminates when no more pathgroups can be completed. Any
remaining pathgroups define additional chromosomes in the ancestor A.

4 On the Utility of Singletons and Defective Homology
Sets

From the last column of Table 1, it is clear that of the four factors, inclu-
sion/exclusion of singletons, inclusion/exclusion of defective homology sets, out-
group species and heuristic, the largest effects on total genomic distance are due
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to the choice of homology sets and inclusion of singletons, while the heuristic
used has a much smaller effect. We will return to the differences between the
algorithms in Section 5, and to the choice of outgroup in Section 7, but we can
observe here that the inclusion of the homology sets defective by virtue of one
missing Populus copy increases the genomic distances disproportionately and
also reduces the quality of the inference, as measured by r in all the analyses
containing singletons, and all the Populus-A ⊕ A comparisons.

At the same time the inclusion of singletons had a major effect on the distance,
especially where the PV or PC homology sets are included. In addition, by
comparing all the sub-tables with singletons, in the top half of the table, with the
corresponding sub-table without singletons, in the bottom half, the inclusion of
singletons degrades the analysis, with few exceptions, as measured by an increase
in the two r statistics, the one pertaining to the duplicated genome and the one
pertaining to the outgroup.

5 Comparison of the Heuristics

In Table 1, the constrained guided halving algorithm always does better than
the unconstrained guided halving heuristic, as measured by the total distance in
the last column. At the same time, the unconstrained heuristic had a clear effect
in reducing the bias towards Populus, in each case decreasing the distance to the
outgroup, compared to the constrained heuristic. This decrease was accompanied
by a small decrease in r for the outgroup analysis.

In fact the decrease in the bias was far greater than the increase in total cost,
meaning that if bias reduction is important, then this heuristic is worthwhile,
despite its inability to find a minimizing ancestor and its lengthy execution time.

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Outgroup distance (proportion of total distance)

D
if
fe

re
n
c
e
 b

e
tw

e
e
n
 c

o
n
s
tr

a
in

e
d
 h

a
lv

in
g
 a

n
d
 t

ru
e
 

h
a
lv

in
g
 h

e
u
ri
s
ti
c
 r

e
s
u
lt
s

895

900

905

910

915

920

100 200 300 400 500 600 700 800 900

Simulated outgroup distance (out of 1000 

rearrangements)

In
fe

rr
e
d
 t

o
ta

l 
d
is

ta
n
c
e

Fig. 3. Performance of the constrained and unconstrained heuristics as a function of
the real (left) or simulated (right) distance of the outgroup from A



260 D. Sankoff et al.

To further investigate the behaviour of the new algorithm, we simulated evo-
lution by M inversions and translocations (in a 10:1 proportion) from a genome
A to produce a genome R and 1000−M rearrangements from genome A⊕A to
produce a genome T . We then applied the constrained and the new algorithms,
showing that the new one was superior when M < 800, but not for M ≥ 1000,
as seen in Figure 3 (right). Considering the 16 comparisons between the con-
strained and the new algorithm, the change in the total distance also shows a
distinct correlation (ρ2 = 0.5) with the distance from the outgroup and A. We
point this out even though the constrained algorithm, as we have seen, seems
superior when the distance between R and A is more than 20 % of the total
distance. This is plotted in Figure 3 (left).

The difference between the simulations, where the new method is always su-
perior, and the real analysis, where the new method would seem to be superior
only when the outgroup is very close to the ancestor, must be ascribed to some
way the model used for the simulations does not fit the data. One clue is the rela-
tively high reuse rate in the comparison between the outgroup and A, compared
with that between Populus and A ⊕ A.

6 Rearrangements of Partially Assembled Genomes

Our analyses involving Carica have incorporated an important correction. The
genomic distance between Carica and A counts many chromosome fusion events
that reduce the number of “chromosomes” in Carica from 223 to the 19. These
are not a measure of the true rearrangement distance, but only of the current
state of the Carica data. Since these may be considered to take place as a first
step in the rearrangement scenario [16], we may simply subtract their number
from d to estimate the true distance. At the same time, many of the breakpoints
between A and Carica are removed by these same fusions, so these should be
removed from the count of b as well. The calculations in Table 2 illustrate how
the d(A, Carica) results in the bottom quarter of Table 1 were obtained.

Table 2. Correction for contig data. A: pre-doubling ancestor of Populus, A ⊕ A:
doubled ancestor, PPC: full gene sets, PP: defective, missing papaya ortholog, PC:
defective, missing one poplar paralog. d: genomic distance, b: number of breakpoints,
r = 2d/b: the reuse statistic, c: number of contigs, d − c + 9: distance corrected for
excess of contigs over true number of chromosomes, a: number of ‘obvious fusions”.
Data without singletons. Solutions obtained by constrained algorithm.

d(A,Carica) correction
data sets genes in A d b uncorrected r c d − c + 9 a b − a corrected r

PPC 2464 986 1090 1.81 223 772 76 1014 1.52
PPC, PP 3226 1027 1132 1.81 224 812 74 1058 1.53
PPC,PC 4651 1084 1177 1.84 314 779 123 1054 1.48
PPC,PP,PC 5234 1214 1318 1.84 325 898 112 1206 1.49
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Figure 4 (left) shows experimental results on how the increasing fragmenta-
tion of a genome into contigs, using a random fragmentation of Vitis grenome,
decreases the estimated distance between Vitis and A. This is understandable,
since the freedom of the contigs to fuse in any order without this counting as a
rearrangment step, inevitably will reduce the distance by chance alone. But the
linearity of the result suggests that this decrease is quite predictable, and that
the estimates of the distance between Carica and A are actually underestimates
by about 10 %.
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Fig. 4. Left: Effect of increasing fragmentation of Vitis into “contigs” on the distance
between the reconstructed A and Vitis. Right: Distributions of distances among solu-
tions for A based on Vitis data (white bars) and among solutions for Vitis fragmented
into contigs in different random ways (gray bars).

Figure 4 (right) shows that creating contigs by randomly breaking the Vi-
tis genome does not create excessive variability among the solutions, only the
same as the dispersion of alternate solutions for the original Vitis data, a few
percentage points of the distance itself.

7 A Comparison of the Outgroups

Perhaps the most surprising result of this study is that the Vitis gene order is
decidedly closer to Populus and its ancestor A than Carica is. Both the Tree
of Life and the NCBI Taxonomy Browser currently exclude the Vitaceae family
from the rosids, though some older taxonomies do not make this distinction.

Before interpreting this result, we should correct two sources of error in the
comparison of Vitis and Carica. The first is that the Carica distances are based
on a larger gene set; without singletons and defective homology sets PPC is
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22 % larger than PPV. As a rule of thumb, we can expect distances to be ap-
proximately proportional to the number of genes. This overestimation of the
Carica-ancestor distance might account for about half the difference in the dis-
tances. But the other source of error is due to the contig data, and this results
in an underestimate of the Carica-ancestor distance. From Figure 4, we can es-
timate that the Carica distances are underestimated by about 10 % because of
the 223 contigs in the Carica data. So this increases the discrepancy between
the two outgroups, restoring it almost to what it was before the corrections.

We may conclude that this difference is genuine and substantial. Then as-
suming that Populus and Carica have a closer phylogenetic relationship, or even
a sister relationship, our results can only be explained by a faster rate of gene
order evolution in Carica than in Vitis.

7.1 Using Both Outgroups

There are 1734 complete homologous gene sets including two Populus copies
and one copy in each of Carica and Vitis. In the same way that the uncon-
strained algorithm in Section 3 is based on a modification of the guided halving
algorithm for one outgroup in reference [17], we could define an unconstrained
version of the two-outgroup guided halving algorithm implemented in that earlier
work. For convenience, however, we use the constrained version of two-outgroup
guided halving from reference [17] to find the ancestor (small circle) genome in
Figure 5(a) as a first step, then compute the “median” genome based on this
ancestor, Carica and Vitis. The median problem here is to find the genome,
the sum of whose distances from ancestor A, Carica and Vitis is minimal. This
problem is NP-hard [12] and solving it is barely feasible with the 1734 genes in
our data, requiring some 300 hours of MacBook computing time.

This initial result unfortunately inherits the same defect as the Carica data,
i.e., it is composed of contigs rather than true chromosomes. In this case, the
median genome contains 118 “contig-chromosomes”. And in the same way, we
may correct it by subtracting the number of contigs in excess of a reasonable
number of chromosomes (19 in the median) from the distance in order to obtain
a corrected distance. This corresponds to disregarding the fusions counted in the
original distance that are essentially carrying out an optimal assembly, modeling
an analytical process, not a biological one. This produces the corrected values
in Figure 5(b).

Let us compare the distance from Vitis and from Carica to ancestor A, passing
through the median, in Figure 5 (517 and 577, respectively), with the minimum
distances1 in Table 1, and proportionately adjusted for the reduced number of
genes (560× 1734

2020 = 481 and 772× 1734
2464 = 543, respectively. Passing through the

median modestly augments (by 36 and by 34, respectively) both trajectories. But
using the median diminishes the total cost of the phylogeny, i.e., in comparison
with a phylogeny where there is no common evolutionary divergence of the out-
groups from Populus from 481+170+543+170 = 1364 to 517+577+170 = 1264.

1 Constrained analyses, no singleton or defective homology sets.



Internal Validation of Ancestral Gene Order Reconstruction 263

grape

papaya

poplar

446

631

269

grape

papaya

poplar

286

781

306

grape

papaya

poplar

347

407

170

grape

papaya

poplar

275

469

295

Rearrangement median                                          Breakpoint median

corrected distance corrected distance

(a) (b) (c) (d)

Fig. 5. Branch lengths in angiosperm phylogeny, using two estimates of the median,
and applying the contig correction

There is one version of guided halving that is of polynomial complexity [12].
This involves a “general breakpoint model” for multichromosomal genomes,
which does not explicitly refer to rearrangements. Running this algorithm, re-
quiring only 15 MacBook minutes, on the three angiosperm genomes results in
a median with only 30 contig-chromosomes. Calculating the rearrangement dis-
tances from this median to ancestor A, Carica and Vitis gives the results in
Figure 5(c); correcting them for excess contigs gives the results in Figure 5(d).

Figures 5(b) confirm that the papaya genome has evolved more rapidly than
the grapevine one. Figure 5(d) shows an even greater distance, although this is
not based on the rearrangement median.

8 Conclusions

The main contributions of this paper are:

– The discovery of the rapid rate of gene order evolution in Carica compared
to Vitis,

– Away to use incompletely assembled contigs in genome rearrangement studies,
– A new unbiased algorithm for guided genome halving, and
– The systematic use of reuse rates to show that the inclusion of defective ho-

mology sets and singletons are not helpful in ancestral genome reconstruction.

In this work, we have not considered the Arabidopsis genome. The main reason
is not any algorithmic issue, but the paucity of full homology sets containing four
Arabidopsis copies as well as copies from one or more outgroups.
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